PHOTOCHEMICAL CYCLOADDITION OF 9,10-PHENANTHROQUINONES TO ALLENES

J.S.M. Boleij and H.J.T. Bos

Laboratory of Organic Chemistry, Rijksuniversiteit Utrecht, The Netherlands (Received in UK 6 July 1971; accepted for publication 20 July 1971)

The reaction of triplet 9,10-phenanthroquinone (PQ) with allene and its derivatives yields mixtures of isomeric 2-alkylidene-2,3-dihydrophenanthro $[9,10-\underline{b}]-1,4-dioxins II^2$.

These dioxins were obtained from the reaction of PQ with allene and with eight methyl, methoxy, and methylthio derivatives². In the same way addition could also be performed with the allenes: $C_6H_5-HC=C=CH_2$, $\underline{t}-C_4H_9-HC=C=CH_2$, $C_6H_5O-HC=C=CH_2$, $\underline{t}-C_4H_9-HC=C=CH_2$, $C_6H_5O-HC=C=CH_2$.

Rate constants k_2 were ascertained to get insight into the influence of substituents. Quantum yields were determined in benzene using light with $\lambda \ge 385$ nm. As actinometer the reaction of <u>trans</u>-stilbene with PQ (Φ =0.066) was used³.

The quantum yield of quinone disappearance (Φ_{PQ}) varied from 0.09 for NC-HC=C=CH₂ to 0.98 for CH₃O-HC=C=CH₂. The quantum yield of adduct formation (Φ_{Add}) determined from NMR data, varied from 0.00 to 0.53 for these allenes respectively. For CH₃O-HC=C=CH₂ Φ_{PQ} and Φ_{Add} were independent of allene concentration. This indicates that neither appreciable decay to the ground state nor reversible addition takes place. Reversible addition was observed for reaction of PQ with C₂H₅O-HC=CH₂ ($\Phi_{PQ} = 0.40$); compare ^{3,4}. Probably with allenes the stable allylic adduct-biradical I is formed before ringolosure (cf. ⁵).

The rate of adduct formation for $CH_3O-HC=C=CH_2$ was estimated from the slopes of a Stern-Volmer plot at two different allene concentrations, using anthracene as triplet quencher (compare ⁴) and assuming the bimolecular quenching constant at 25° in benzene to be 8.8×10^9 {.mole⁻¹ s.⁻¹} The rate constants k of other allenes were determined with aid of competition experiments (see table).

Rate constants of adduct formation k and $\Phi_{\rm Add}$ concern all isomeric adducts II. The effect of methyl substituents on the rate constants for each double bond

Allene	k ₂ x 10 ⁷	substituent	σ ⁸	E _R ⁸]
CH3S-HC=C=CH2	86	CH ₃ S	0.00	0.44 ^b	
$\underline{t} - C_4 H_9 O - HC = C = CH_2$	77	t-C4H90			a) Estimated value for the bromo-
C6 ^H 5 ^{O-HC=C=CH} 2	76	^С 6 ^Н 5 ^О	-0.32	0.13	substituted double bond.
CH ₃ O-HC=C=CH ₂	69	сн _з о	-0.27	0.11	
°6 ^H 5 ^{-HC=C=CH} 2	28	^С 6 ^Н 5	-0.01	0.52°	5) Calculated from ∇ and ∇ + 8
$\underline{t} - C_4 H_9 - HC = C = CH_2$	3.7	±−°4 ^H 9	-0.20	0.03	(compare ⁹)
Br-HC=C=CH2	\approx 0.1 ^a	Br	0.23	0.12	
(CH ₃)2 ^{C=C=C(CH₃)2}	48				polymerisation
(CH ₃) ₂ C=C=CH-CH ₃	28	CH ₃	-0.17	0.03	data (Q -value ⁹)
(CH ₃) ₂ C=C=CH ₂	21	2 x CH ₃	-0.34	0.06	
CH3-HC=C=CH-CH3	8	-			
CH3-HC=C=CH2	4.7				
H ₂ C=C=CH ₂	0.5				

Rate constants k of the reaction of PQ with allenes and substituent constants

in the allene system assuming central attack appears to be additive (see table).

The influence of substituents on free-radical reactions can be correlated with an extended Hammett relationship evaluated by Yamamoto and Otsu⁶ $log(k/k_o) = \rho \sigma + \gamma E_R$, where σ and E_R are polar and resonance substituent constants (table) and ρ and γ reaction constants. Applying this equation to our cycloaddition a linear correlation is obtained plotting $[log(k/k_o)]/E_R$ versus $\sqrt[6]{E_R}$ with $\rho = -5.5$ and $\gamma = 5.9$ (correlation coefficient 0.98). The values for $t^{-C}_4H_9$ and 2x CH₃ are not correlated so good, which could be indicative for steric hindrance.

1. Photochemical cycloaddition of o-quinones II.

- 2. H.J.T. Bos, C. Slagt and J.S.M. Boleij, Rec.Trav.Chim., 89, 1170 (1970).
- 3. J.J. Bohning and K. Weiss, J.Am.Chem.Soc., 88, 2893 (1966).
- 4. S. Farid and K.-H. Scholz, Chem.Comm. 1968, 412.
- 5. L.K. Montgomery, K. Schneller and P.D. Bartlett, J.Am.Chem.Soc., <u>86</u>, 622 (1964).
- 6. cf. N.J. Turro, "Molecular Photochemistry", Benjamin Inc., New York, 1965.
- 7. T. Yamamoto and T. Otsu, Chem.Ind. London, 1967, 787.
- 8. C. Hansch and R. Kerley, Chem.Ind. London, 1969, 294.
- 9. C. Hansch, E. Kutter and A. Leo, J.Med.Chem., <u>12</u>, 746 (1969); cf. T. Otsu, T. Ito, Y. Fujii and M. Imoto, Bull.Chem.Soc. Japan <u>41</u>, 204 (1968).